skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhattacharya, Anirban"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graphical models are ubiquitous for summarizing conditional relations in multivariate data. In many applications involving multivariate time series, it is of interest to learn an interaction graph that treats each individual time series as nodes of the graph, with the presence of an edge between two nodes signifying conditional dependence given the others. Typically, the partial covariance is used as a measure of conditional dependence. However, in many applications, the outcomes may not be Gaussian and/or could be a mixture of different outcomes. For such time series using the partial covariance as a measure of conditional dependence may be restrictive. In this article, we propose a broad class of time series models which are specifically designed to succinctly encode process-wide conditional independence in its parameters. For each univariate component in the time series, we model its conditional distribution with a distribution from the exponential family. We develop a notion of process-wide compatibility under which such conditional specifications can be stitched together to form a well-defined strictly stationary multivariate time series. We call this construction a conditionally exponential stationary graphical model (CEStGM). A central quantity underlying CEStGM is a positive kernel which we call the interaction kernel. Spectral properties of such positive kernel operators constitute a core technical foundation of this work. We establish process-wide local and global Markov properties of CEStGM exploiting a Hammersley-Clifford type decomposition of the interaction kernel. Further, we study various probabilistic properties of CEStGM and show that it is geometrically mixing. An approximate Gibbs sampler is also developed to simulate sample paths of CEStGM. 
    more » « less
    Free, publicly-accessible full text available November 6, 2027
  2. We propose a semiparametric Bayesian methodology for estimating the average treatment effect (ATE) within the potential outcomes framework using observational data with high-dimensional nuisance parameters. Our method introduces a Bayesian debiasing procedure that corrects for bias arising from nuisance estimation and employs a targeted modeling strategy based on summary statistics rather than the full data. These summary statistics are identified in a debiased manner, enabling the estimation of nuisance bias via weighted observables and facilitating hierarchical learning of the ATE. By combining debiasing with sample splitting, our approach separates nuisance estimation from inference on the target parameter, reducing sensitivity to nuisance model specification. We establish that, under mild conditions, the marginal posterior for the ATE satisfies a Bernstein-von Mises theorem when both nuisance models are correctly specified and remains consistent and robust when only one is correct, achieving Bayesian double robustness. This ensures asymptotic efficiency and frequentist validity. Extensive simulations confirm the theoretical results, demonstrating accurate point estimation and credible intervals with nominal coverage, even in high-dimensional settings. The proposed framework can also be extended to other causal estimands, and its key principles offer a general foundation for advancing Bayesian semiparametric inference more broadly. 
    more » « less
    Free, publicly-accessible full text available November 19, 2026
  3. Free, publicly-accessible full text available September 1, 2026
  4. Free, publicly-accessible full text available June 1, 2026
  5. Free, publicly-accessible full text available May 22, 2026
  6. Inference in semi-supervised (SS) settings has gained substantial attention in recent years due to increased relevance in modern big-data problems. In a typical SS setting, there is a much larger-sized unlabeled data, containing only observations of predictors, and a moderately sized labeled data containing observations for both an outcome and the set of predictors. Such data naturally arises when the outcome, unlike the predictors, is costly or difficult to obtain. One of the primary statistical objectives in SS settings is to explore whether parameter estimation can be improved by exploiting the unlabeled data. We propose a novel Bayesian method for estimating the population mean in SS settings. The approach yields estimators that are both efficient and optimal for estimation and inference. The method itself has several interesting artifacts. The central idea behind the method is to model certain summary statistics of the data in a targeted manner, rather than the entire raw data itself, along with a novel Bayesian notion of debiasing. Specifying appropriate summary statistics crucially relies on a debiased representation of the population mean that incorporates unlabeled data through a flexible nuisance function while also learning its estimation bias. Combined with careful usage of sample splitting, this debiasing approach mitigates the effect of bias due to slow rates or misspecification of the nuisance parameter from the posterior of the final parameter of interest, ensuring its robustness and efficiency. Concrete theoretical results, via Bernstein--von Mises theorems, are established, validating all claims, and are further supported through extensive numerical studies. To our knowledge, this is possibly the first work on Bayesian inference in SS settings, and its central ideas also apply more broadly to other Bayesian semi-parametric inference problems. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  7. Free, publicly-accessible full text available February 10, 2026
  8. We consider the estimation of the marginal likelihood in Bayesian statistics, with primary emphasis on Gaussian graphical models, where the intractability of the marginal likelihood in high dimensions is a frequently researched problem. We propose a general algorithm that can be widely applied to a variety of problem settings and excels particularly when dealing with near log-concave posteriors. Our method builds upon a previously posited algorithm that uses MCMC samples to partition the parameter space and forms piecewise constant approximations over these partition sets as a means of estimating the normalizing constant. In this paper, we refine the aforementioned local approximations by taking advantage of the shape of the target distribution and leveraging an expectation propagation algorithm to approximate Gaussian integrals over rectangular polytopes. Our numerical experiments show the versatility and accuracy of the proposed estimator, even as the parameter space increases in dimension and becomes more complicated. 
    more » « less